Convex Collective Matrix Factorization

نویسندگان

  • Guillaume Bouchard
  • Dawei Yin
  • Shengbo Guo
چکیده

In many applications, multiple interlinked sources of data are available and they cannot be represented by a single adjacency matrix, to which large scale factorization method could be applied. Collective matrix factorization is a simple yet powerful approach to jointly factorize multiple matrices, each of which represents a relation between two entity types. Existing algorithms to estimate parameters of collective matrix factorization models are based on non-convex formulations of the problem; in this paper, a convex formulation of this approach is proposed. This enables the derivation of large scale algorithms to estimate the parameters, including an iterative eigenvalue thresholding algorithm. Numerical experiments illustrate the benefits of this new approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Matrix Completion and Related Problems via Strong Duality

This work studies the strong duality of non-convex matrix factorization problems: we show that under certain dual conditions, these problems and its dual have the same optimum. This has been well understood for convex optimization, but little was known for non-convex problems. We propose a novel analytical framework and show that under certain dual conditions, the optimal solution of the matrix...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Convex Nonnegative Matrix Factorization with Rank-1 Update for Clustering

In convex nonnegative matrix factorization, the feature vectors are modeled by convex combinations of observation vectors. In the paper, we propose to express the factorization model in terms of the sum of rank-1 matrices. Then the sparse factors can be easily estimated by applying the concept of the Hierarchical Alternating Least Squares (HALS) algorithm which is still regarded as one of the m...

متن کامل

Efficient Matrix Models for Relational Learning

Relational learning deals with the setting where one has multiple sources of data, each describing different properties of the same set of entities. We are concerned primarily with settings where the properties are pairwise relations between entities, and attributes of entities. We want to predict the value of relations and attributes, but relations between entities violate the basic statistica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013